欢迎来到360期刊网!
学术期刊
  • 学术期刊
  • 文献
  • 百科
电话
您当前的位置:

首页 > 文献资料

  • 作者:

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game control er, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains un-clear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week fol ow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week fol ow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebel um were also activated during hand-clenching in al 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sen-sorimotor cortex.

  • 作者:

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a com-puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These ifndings suggest that virtual reality training can acti-vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  • 作者:

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a deifned interface. Virtual real-ity interface devices such as the Nintendo? Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addi-tion, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  • 远程虚拟康复训练在骨科的应用

    作者:叶哲伟;杨述华;彭玉兰

    远程医疗是21世纪的一场新兴的信息产业革命,它将给人类社会带来极大的社会效益和经济效益.虚拟现实(virtual reality,VR)作为一种高科技手段,已经在一些生物医学领域得到成功应用[1],在医学教学、疾病诊断、手术模拟、康复医疗等方面逐渐显现出其重要性.随着计算机技术的飞速发展,在骨科的康复训练中将远程医疗和虚拟现实结合起来,进行远程虚拟康复(telerehabilitated virtual reality)已成为可能.

  • 作者:

    Computer Assisted Rehabilitation Environment (CAREN) is a system that integrates a training platform (motion base), a virtual environment, a sensor system (motion capture) and D-flow software. It is useful for both diagnostic and therapeutic use. The human gait pattern can be impaired due to disease, trauma or natural decline. Gait analysis is a useful tool to identify impaired gait patterns. Traditional gait analysis is a very time consuming process and therefore only used in exceptional cases. With new systems a quick and extensive analysis is possible and provides useful tools for therapeutic purposes. The range of systems will be described in this paper, highlighting both their diagnostic use and the therapeutic possibilities. Because wounded warriors often have an impaired gait due to amputations or other extremity trauma, these systems are very useful for military rehabilitative efforts. Additionally, the virtual reality environment creates a very challenging situation for the patient, enhancing their rehabilitation experience. For that reason several Armed Forces have these systems already in use. The most recent experiences will be discussed; including new developments both in the extension of the range of systems and the improvement and adaptation of the software. A new and promising development, the use of CAREN in a special application for patients with post-traumatic stress disorder (PTSD), will also be reviewed.

360期刊网

专注医学期刊服务15年

  • 您好:请问您咨询什么等级的期刊?专注医学类期刊发表15年口碑企业,为您提供以下服务:

  • 1.医学核心期刊发表-全流程服务
    2.医学SCI期刊-全流程服务
    3.论文投稿服务-快速报价
    4.期刊推荐直至录用,不成功不收费

  • 客服正在输入...

x
立即咨询