欢迎来到360期刊网!
学术期刊
  • 学术期刊
  • 文献
  • 百科
电话
您当前的位置:

首页 > 文献资料

  • 作者:

    Percutaneous microballoon compression of the trigeminal ganglion is a brand new operative technique for the treatment of trigeminal neuralgia. However, it is unclear how the procedure mediates pain relief, and there are no standardized criteria, such as compression pressure, com-pression time or balloon shape, for the procedure. In this study, percutaneous microballoon compression was performed on the rabbit trigeminal ganglion at a mean inlfation pressure of 1,005 ± 150 mmHg for 2 or 5 minutes. At 1, 7 and 14 days after percutaneous microballoon compression, the large-diameter myelinated nerves displayed axonal swelling, rupture and demy-elination under the electron microscope. Fragmentation of myelin and formation of digestion chambers were more evident after 5 minutes of compression. Image analyzer results showed that the diameter of trigeminal ganglion cells remained unaltered after compression. These experi-mental ifndings indicate that a 2-minute period of compression can suppress pain transduction. Immunohistochemical staining revealed that vascular endothelial growth factor expression in the ganglion cells and axons was signiifcantly increased 7 days after trigeminal ganglion compression, however, the changes were similar after 2-minute compression and 5-minute compression. The upregulated expression of vascular endothelial growth factor in the ganglion cells after percu-taneous microballoon compression can promote the repair of the injured nerve. These ifndings suggest that long-term compression is ideal for patients with recurrent trigeminal neuralgia.

  • 作者:

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the ifltering principle of hair cells, external voice sig-nals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass ifltering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequen-cy analysis, the frequency range of the band-pass iflter can also be determined. These ifndings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to dis-tinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes’ hearing problems. Scientiifc hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized.

  • 作者:

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson’s disease during the long-term chelating therapy using magnetic resonance imaging and a possible signiifcance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson’s disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the ifrst symp-toms and group B, where the therapy started≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a signiifcant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P= 0.005 andP=0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be ex-pected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity.

  • 作者:

    Previous studies have demonstrated that nerve cells differentiated from adipose-derived stro-mal cells after chemical induction have reduced viability;however, the underlying mechanisms remained unclear. In this study, we induced the differentiation of adult adipose-derived stromal cells into astrocytes using chemical induction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide assay and flow cytometry showed that, with increasing induction time, the apoptotic rate gradually increased, and the number of living cells gradually decreased. Im-munohistochemical staining demonstrated that the number of glial fibrillary acidic protein-, caspase-3- and caspase-9-positive cells gradually increased with increasing induction time. Transmission electron microscopy revealed typical signs of apoptosis after differentiation. Taken together, our results indicate that caspase-dependent apoptosis is an obstacle to the differentia-tion of adipose-derived stromal cells into astrocytes. Inhibiting apoptosis may be an important strategy for increasing the efifciency of induction.

  • 作者:

    This study investigated the effects of small interfering RNA (siRNA)-mediated silencing of chemokine receptor 4 (CXCR4) on the invasion capacity of human neuroblastoma cell line SH-SY5Y in vitro. Three siRNAs targeting CXCR4 were chemically synthesized and individually transfected into SH-SY5Y cells. Expression of CXCR4 mRNA and protein was signiifcantly sup-pressed in transfected cells by all three sequence-speciifc siRNAs compared with control groups. Furthermore, the invasion capacity of SH-SY5Y cells was signiifcantly decreased following trans-fection with CXCR4-speciifc siRNA compared with the control groups. These data demonstrate that down-regulation of CXCR4 can inhibit in vitro invasion of neuroblastoma.

  • 作者:

    Fractional anisotropy values in diffusion tensor imaging can quantitatively relfect the consistency of nerve ifbers after brain damage, where higher values generally indicate less damage to nerve ifbers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axonal injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups:normothermic and mild hypothermic treatment groups. Patient’s modiifed Rankin scale scores 2 months after mild hypothermia were signiifcant-ly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneifcial for patients with diffuse axonal injury.

  • 作者:

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  • 作者:

    To attain the volumetric information of the optic radiation in normal human brains, we per-formed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation ifber tract volume was a range of about 0.16%and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability ifber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are help-ful in the study of optic radiation ifber tract information.

  • 作者:

    Inlfammation may play a role in postoperative cognitive dysfunction. 5′ Adenosine monophos-phate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-αare involved in inlfammation. Therefore, these inlfammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5′adenosine mo-nophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1-7 days after splenectomy. Moreover, interleukin-1βand tumor necrosis fac-tor-αwere upregulated and gradually decreased. Therefore, these inlfammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats.

  • 作者:

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  • 作者:

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  • 作者:

    Nestin+neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin+neu-rons to the olfactory bulb and the time course of nestin+neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin+neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6%of nestin+neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin+neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin+neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin+neurons decreased to a minimum later than nestin-/ChAT+neurons in the medial sep-tum-diagonal band of Broca. The results suggest that nestin+cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin+cholinergic neurons may have a stronger tolerance to injury than Nestin-/ChAT+neurons. The difference between nestin+and nestin-/ChAT+neurons during the recovery process requires further investigations.

  • 作者:

    Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro-tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer’s disease. In this study, we examined the effects of transient axonal glyco-protein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor recep-tor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells.

  • 作者:

    It remains unclear whether autophagy affects hippocampal neuronal injury in vascular dementia. In the present study, we investigated the effects of autophagy blockade on hippocampal neuro-nal injury in a rat model of vascular dementia. In model rats, hippocampal CA1 neurons were severely damaged, and expression of the autophagy-related proteins beclin-1, cathepsin B and microtubule-associated protein 1 light chain 3 was elevated compared with that in sham-oper-ated animals. These responses were suppressed in animals that received a single intraperitoneal injection of wortmannin, an autophagy inhibitor, prior to model establishment. The present results conifrm that autophagy and autophagy-related proteins are involved in the pathological changes of vascular dementia, and that inhibition of autophagy has neuroprotective effects.

  • 作者:

    Most studies addressing the speciifcity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revealed activation in right parietal lobe (Brodmann areas 7 and 19), the right temporal lobe (Brodmann area 39), the right limbic lobe (Brodmann area 23) and bilateral oc-cipital lobes (Brodmann area 18). Furthermore, inhibition of bilateral frontal lobes (Brodmann area 4, 6, and 45), right parietal lobe (Brodmann areas 1 and 5) and left temporal lobe (Brodmann area 21) were observed in the true point group. Activation in the precuneus of right parietal lobe (Brodmann area 7) and inhibition of the left superior frontal gyrus (Brodmann area 10) was observed in the sham group. Compared with sham acupuncture, acupuncture at Waiguan in stroke patients inhibited Brodmann area 5 on the healthy side. Results indicated that the altered speciifcity of sensation-associated cortex (Brodmann area 5) is possibly associated with a central mechanism of acupuncture at Waiguan for stroke patients.

  • 作者:

    We previously found that the K141N mutation in heat shock protein B8 (HSPB8) was respon-sible for Charcot-Marie-Tooth disease type 2L in a large Chinese family. The objective of the present study was to generate a transgenic mouse model bearing the K141N mutation in the human HSPB8 gene, and to determine whether this K141NHSPB8 transgenic mouse model would manifest the clinical phenotype of Charcot-Marie-Tooth disease type 2L, and consequently be suitable for use in studies of disease pathogenesis. Transgenic mice overexpressing K141NHSPB8 were generated using K141N mutant HSPB8 cDNA cloned into a pCAGGS plasmid driven by a human cytomegalovirus expression system. PCR and western blot analysis conifrmed integra-tion of the K141NHSPB8 gene and widespread expression in tissues of the transgenic mice. The K141NHSPB8 transgenic mice exhibited decreased muscle strength in the hind limbs and impaired motor coordination, but no obvious sensory disturbance at 6 months of age by behavioral assess-ment. Electrophysiological analysis showed that the compound motor action potential amplitude in the sciatic nerve was signiifcantly decreased, but motor nerve conduction velocity remained normal at 6 months of age. Pathological analysis of the sciatic nerve showed reduced myelinated ifber density, notable axonal edema and vacuolar degeneration in K141NHSPB8 transgenic mice, suggesting axonal involvement in the peripheral nerve damage in these animals. These ifndings indicate that the K141NHSPB8 transgenic mouse successfully models Charcot-Marie-Tooth disease type 2L and can be used to study the pathogenesis of the disease.

  • 作者:

    Global aphasia without hemiparesis is a striking stroke syndrome involving language impairment without the typically manifested contralateral hemiparesis, which is usually seen in patients with global aphasia following large left perisylvian lesions. The objective of this study is to elucidate the speciifc areas for lesion localization of global aphasia without hemiparesis by retrospectively studying the brain magnetic resonance images of six patients with global aphasia without hemi-paresis to deifne global aphasia without hemiparesis-related stroke lesions before overlapping the images to visualize the most overlapped area. Talairach coordinates for the most overlapped areas were converted to corresponding anatomical regions. Lesions where the images of more than three patients overlapped were considered significant. The overlapped global aphasia without hemiparesis related stroke lesions of six patients revealed that the signiifcantly involved anatomi-cal lesions were as follows:frontal lobe, sub-gyral, sub-lobar, extra-nuclear, corpus callosum, and inferior frontal gyrus, while caudate, claustrum, middle frontal gyrus, limbic lobe, temporal lobe, superior temporal gyrus, uncus, anterior cingulate, parahippocampal, amygdala, and subcallosal gyrus were seen less signiifcantly involved. This study is the ifrst to demonstrate the heteroge-neous anatomical involvement in global aphasia without hemiparesis by overlapping of the brain magnetic resonance images.

  • 作者:

    The human glutamate receptor delta 2 gene (GRID2) shares 90%homology with the orthologous mouse gene. The mouse Grid2 gene is involved with functions of the cerebellum and sponta-neous mutation of Grid2 leads to a spinocerebellar ataxia-like phenotype. To investigate whether such mutations occur in humans, we screened for mutations in the coding sequence of GRID2 in 24 patients with familial or sporadic spinocerebellar ataxia and in 52 normal controls. We de-tected no point mutations or insertion/deletion mutations in the 16 exons of GRID2. However, a polymorphic 4 nucleotide deletion (IVS5-121_-118 GAGT) and two single nucleotide polymor-phisms (c.1251G>T and IVS14-63C>G) were identiifed. The frequency of these polymorphisms was similar between spinocerebellar ataxia patients and normal controls. These data indicate that spontaneous mutations do not occur in GRID2 and that the incidence of spinocerebellar ataxia in humans is not associated with GRID2 mutation or polymorphisms.

  • 作者:

    The thyroid hormones, triiodothyronine and thyroxine, play important roles in cognitive func-tion during the mammalian lifespan. However, thyroid hormones have not yet been used as a therapeutic agent for normal age-related cognitive deficits. In this study, CD-1 mice (aged 24 months) were intraperitoneally injected with levothyroxine (L-T4;1.6μg/kg per day) for 3 consecutive months. Our findings revealed a significant improvement in hippocampal cyto-skeletal rearrangement of actin and an increase in serum hormone levels of L-T4-treated aged mice. Furthermore, the survival rate of these mice was dramatically increased from 60%to 93.3%. The Morris water maze task indicated that L-T4 restored impaired spatial memory in aged mice. Furthermore, level of choline acetyltransferase, acetylcholine, and superoxide dismutase were in-creased in these mice, thus suggesting that a possible mechanism by which L-T4 reversed cognitive impairment was caused by increased activity of these markers. Overall, supplement of low-dosage L-T4 may be a potential therapeutic strategy for normal age-related cognitive deifcits.

  • 作者:

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypoth-esized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, ifber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimu-lation can promote peripheral nerve repair.

329 条记录 5/17 页 « 12345678...1617 »

360期刊网

专注医学期刊服务15年

  • 您好:请问您咨询什么等级的期刊?专注医学类期刊发表15年口碑企业,为您提供以下服务:

  • 1.医学核心期刊发表-全流程服务
    2.医学SCI期刊-全流程服务
    3.论文投稿服务-快速报价
    4.期刊推荐直至录用,不成功不收费

  • 客服正在输入...

x
立即咨询