
发表一篇学和医学成像类SCI论文
需要多少钱?
Abstract:
PURPOSE:The prediction of atherosclerosis using retinal fundus images and deep learning has not been shown possible. The purpose of this study is to develop a deep learning model which predicts atherosclerosis using retinal fundus images and to verify its clinical implications by conducting a retrospective cohort analysis. DESIGN:Retrospective cohort study. METHODS:The database at Health Promotion Center of Seoul National University Hospital (HPC-SNUH) was used. The deep learning model was trained on 15,408 images to predict carotid artery atherosclerosis, which we named the deep learning-funduscopic atherosclerosis score (DL-FAS). We constructed a retrospective cohort of participants aged 30-80 years who had completed elective health check-ups at HPC-SNUH. Using DL-FAS the as the main exposure, we followed participants for the primary outcome of death due to CVD until Dec. 31st, 2017. RESULTS:For predicting carotid artery atherosclerosis among testing-set subjects, the model achieved an AUROC, AUPRC, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 0.865 respectively. The cohort comprised of 32,227 participants, 78 CVD deaths, and 7.6-year median follow-up. Those with DL-FAS greater than 0.66 had an increased risk of CVD deaths compared to DL-FAS<0.33 (HR, 95%CI; 8.83, 3.16-24.7). Risk association was significant among intermediate and high Framingham risk score (FRS) subgroups. The DL-FAS improved the concordance by 0.0266 (95% CI, 0.0043-0.0489) over the FRS-only model. Relative integrated discrimination index (IDI) was 20.45% and net reclassification index (NRI) was 29.5%. CONCLUSIONS:We developed a deep learning model which can predict atherosclerosis from retinal fundus images. The resulting DL-FAS was an independent predictor of CVD deaths when adjusted for FRS and added predictive value over FRS.
展开更多
最新影响因子:5.488 | 期刊ISSN:0002-9394 | CiteScore:3.64 |
出版周期:Monthly | 是否OA:YES | 出版年份:1884 |
期刊官方网址:http://www.ajo.com/
自引率:6.80% | 研究方向:医学-眼科学 |
出版地区:UNITED STATES |
SCI期刊coverage:Science Citation Index Expanded(科学引文索引扩展)
专业编辑在线一对一答疑及时解决您的问题
The American Journal of Ophthalmology is a peer-reviewed, scientific publication directed to ophthalmologists and visual science specialists describing clinical investigations, clinical observations, and clinically relevant laboratory investigations related to ophthalmology.
《美国眼科杂志》是一份经过同行评审的科学刊物,面向眼科医生和视觉科学专家,描述与眼科相关的临床调查、临床观察和临床相关实验室调查。
大类(学科) | 小类(学科) | 学科排名 |
医学 |
OPHTHALMOLOGY (眼科学) 2区 |
6/59 |
年度总发文量 | 年度论文发表量 | 年度综述发表量 |
263 | 259 | 4 |
引文计数(2018)
文献(2015-2017)
4576次引用
1257篇文献
序号 | 类别 | 排名 | 百分位 |
1 |
大类(学科):Medicine
小类(学科):Ophthalmology
|
#4/108
点击查看排名表
|
|
推荐刊物均可到国家新闻出
版总署网站查询正刊
可签署保密协议 ,不透露任
何用户信息可跟踪进程,全程
协议
1对1服务,7x24小时在线
14年经验沉淀,实体公司
运营
liting7111
liting7111
研究方向:医学 眼科学
审稿时间: 4个月内
liting7111
研究方向:青光眼
审稿时间: 2个月内 接受率: 比较困难(25%命中)
liting7111
研究方向:眼眶病
接受率: 比较困难(25%命中)
影响因子:2.293
ISSN:0962-7286
研究方向:农林科学-动物学
影响因子:1.083
ISSN:0932-0814
研究方向:农林科学-动物学
影响因子:0.65
ISSN:0008-1078
研究方向:农林科学-动物学
影响因子:0.8
ISSN:0046-9939
研究方向:FISHERIES-ZOOLOGY
影响因子:0.913
ISSN:0137-1592
研究方向:FISHERIES-ZOOLOGY
影响因子:3.605
ISSN:0145-305X
研究方向:医学-动物学
影响因子:1.565
ISSN:1532-0820
研究方向:医学-动物学
影响因子:0.362
ISSN:0324-0770
研究方向:ZOOLOGY-
影响因子:0.653
ISSN:1525-2647
研究方向:医学-动物学
专注医学期刊服务14年
我是360期刊网在线指导老师,请问您想咨询什么等级的期刊(省级、国家级、核心、SCI)?我们提供以下服务:
1.医学期刊推荐
2.医学SCI科研服务
3.医生论文咨询
现在咨询抢期刊推荐直到录用,再付款名额
客服正在输入...
AMERICAN JOURNAL OF OPHTHALMOLOGY 投稿经验
(由下方点评分析获得,4人参与,5652人阅读)