欢迎来到360期刊网
客服电话:4006-587-789 客服在线时间:09:00~22:30(节假日不休息) 客服邮箱:360qikan@vip.163.com在线投稿:非工作时间点此在线提交您的稿件
当前位置: 首页 > 论文范文 > 理工论文 >

施工控制约束下的桥梁高墩大跨预应力砼施工技术研究

时间:2017-10-09 16:30来源:未知 作者:360论文网 点击:

  施工控制约束下的桥梁高墩大跨预应力砼施工技术研究

  王启东

  (中铁十一局集团第二工程有限公司 湖北十堰 44201 3)

  摘要:本文基于笔者多年从事桥梁施工技术的相关工作经验,v桥梁高墩大跨预庄力砼施工控制为研究对象,探讨了施工控制约束下的桥梁高墩大跨预应力砼施工方法,全文是笔者长期工作实践基础上的理论升华,相信对从事相关工作的同行有着重要的参考价值和借鉴意义。

  关键词:高墩大跨 悬臂施工 施工控制 连续栗桥

  1连续梁桥施工控制的目的.内容

  1.1施工控制的目的

  对分节段悬臂浇筑施工的预应力混凝土连续梁桥来说,施工控制就是根据施工监测所得的结构参数真实值进行施工阶段计算,确定出每个悬臂节段的标高,并在施工过程中根据施工监测的成果对误差进行分析、预测和对下一立模标高进行调整,以此来保证成桥后桥面线形、合拢段两悬臂端标高的相对偏差不大于规定值以及结构内力状态符合设计要求。

  桥梁施工监控目的就是地确保施工安全的前提下,通过计算分析现场监测、参数识别、模型修正、控制立模标高等手段,确保桥梁成桥线形及受力状态符合设计要求。

  1.2施工控制的内容

  大跨度预应力混凝土连续梁桥的施工监控包括两个方面的内容:变形监控和内力监控。变形监控就是严格控制每一节段箱梁的竖向挠度及其横向偏移,若有偏差并且偏差较大时,就必须立即进行误差分析并确定调整方法,为下一节段更为精确的施工做好准备工作。关于监控方法,针对不同情况亦必然有所差异。内力监控是控制主梁在施工过程中以及成桥后的应力,尤其是合拢时间的控制,使其不致过大而偏于不安全,甚至在施工过程中造成主梁破坏。悬臂施工属于典型的自架设施工方法。由于连续梁桥在施工过程中已成结构(悬臂节段)状态是无法事后调整的,所以,施工监控主要是通过分析计算对下一步的结构状态进行预测和控制。连续梁桥施工监控主要体现在结构模拟分析、施工监测(包括结构变形与应力监测等)、施工误差分析以及后续施工状态预测几个方面。

  2施工控制的方法

  连续梁桥是施工、监测、识别、调整、预告、施工的循环过程,其实质就是使施工按照预定的理想状态(主要是施工标高)顺利推进。而实际上不论是理论分析得到的理想状态,还是实际施工都存在误差,所以,施工控制的核心任务就是对各种误差进行分析、识别、调整,对结构未来做出预测。

  2.1预测控制法

  连续梁桥在梁段浇筑完成后出现的误差,除张拉预应力索外,基本上没有调整的余地,而只能针对己有误差在下一未浇筑梁端的立模标高上作出必要的调整。所以,要保证控制目标的实现,最根本的就是对立模标高作出准确的预测,而预测控制法是连续梁桥施工控制常用的方法。预测控制法是指在全面考虑影响桥梁结构状态的各种因素和施工所要达到的目标后,对结构的每一施工阶段(节段)形成前后进行预测,使施工沿着预定状态进行。由于预测状态与实际状态免不了有误差存在,某种误差对施工目标的影响则在后续施工状态的预测予以考虑,以此循环,直到施工完成和获得与设计相符合的结构状态。这种方法适用于所有桥梁,而对于那些已成结构状态具有不可调整性的桥梁施工控制必须采用此法。如悬臂施工的预应力混凝土连续梁桥,其已成节段的状态(内力、标高)是无法调整的,只能对待施工的节段预测状态进行改变。预测控制以现代控制论为理论基础,其预测方法常见的有卡尔曼(Kalman)滤波法、灰色理论等。

  (1)卡尔曼滤波法。

  卡尔曼滤波法的实质是从被噪音污染的信号中提取真实的信号,采用由状态方程和观测方程组成的线形随机系统的状态空间来描述滤波器,并利用状态方程的递推性,按线性无偏最小均方误差估计准则,采用一套递推算法对滤波器的状态变量作最佳估计,从而求得滤掉噪声后有用信号的最佳估计,即估计出系统的真实状态,然后用估计出来的状态变量,按确定的控制规律系统进行控制。

  (2)灰色系统理论控制法。

  灰色系统理论控制法将灰色系统理论引入桥梁施工控制中。灰色系统可以看作是在一段时间内变化的随机过程,环境干扰将使系统行为特征量过分离散,为此,灰色系统用灰色数生成对原始数据进行处理得到随机性弱化、规律性强化了的序列,在此基础上以灰色动态GM模型作为预测模型,并及时对模型进行滚动优化和反馈校正。灰色预测控制有以下特点。

  ①灰色控制理论是基于系统发展变化的预测控制,是对结构参数及环境影响因素的预测控制,可根据需要把预测得到的结果代入结构方程,从而求得结构的状态参数,这种预测控制方法符合结构实际状态具有较高的准确性。②灰色预测控制建模是少数据建模,是数据的新陈代谢建模,是一种实时控制。在处理方法上,灰色过程是通过原始数据的整理来找数的规律的,是一种就数找数的现实规律的途径,而数理统计方法是按先验规律来处理问题,要求数据越多越好,越具有规律性越好。③灰色预测控制是“采样瞬间规模”控制,其过程是:每采集一个新数据便建立一个新模型,随之更新一组模型参数,所以控制过程也就是不断采集数据,不断建模,不断更新参数,不断预测,不断提高新模型下的预测值的过程。这实际上是采集模型参数的不断更新,来适应行为的不断变化、环境的不断影响、噪声的不断干扰,所以这种控制方法具有较强的适应性。④灰色理论将无规律的原始数据进行生成,使其变成较有规律的生成数列再建模,还可以通过残差分析来调整、修正、提高精度。

  2.2自适应控制

  自适应研究的对象是具有一定程度不确定性的系统,面对客观上存在的各种不确定性,自适应控制系统能在其运行过程中,通过不断的测量系统的输入输出状态和性能参数,逐渐的了解和掌握对象,然后根据所得的过程信息,按一定的设计方法,做出控制决策去更新控制器的结构、参数或控制作用,以便在某种意义下使控制效果达到最优或最近状态。

  2.3线形回归分析法

  线形回归分析法是通过对悬臂箱梁挠度与悬臂长度、悬臂重量的一元线形回归处理或二元线形回归处理,总结建立挠度线形回归数学模型。它可以用于分析箱梁挠度变形的规律,也可以用于预测待施工梁段的挠度。但它无法对温度和施工引起的误差进行修正,并且要求有较多有规律的数据才行,在梁段数比较少时所得到的回归曲线的精度难以保证。

  3施工控制中的主要影响因素

  大跨径连续梁桥施工控制的主要目的是使施工实际状态最大限度地与理想设计状态(线形与受力)相吻合。要实现上述目标,就必须全面了解可能使施工状态偏离理论设计状态的所有因素,以便对施工实施有的放矢的有效控制。

  3.1结构参数

  不论何种桥梁的施工控制,结构参数都是必须考虑的重要因素,结构参数是控制中的结构施工模拟分析的基本资料,其准确性直接影响分析结果的准确性。事实上,实际桥梁结构参数一般是很难与设计所用的结构参数完全吻合,总是存在一定的误差,施工控制中如何恰当地记入这些误差,使结构参数尽量接近桥梁的真实结构参数,是首先需要解决的问题。

  3.2施工工艺

  施工控制是为施工服务的,反过来,施工的好坏又直接影响控制目标的实现。除要求施工工艺必须符合控制要求外,在施工控制中必须计入施工条件非理想化带来的构件制作、安装等方面的误差,使施工状态保持在控制中。

  3.3施工监测

  监测是桥梁施工控制的最基本手段之一。监测包括应力监测、变形监测等。因测量仪器、仪器安装、测量方法、数据采集、环境情况等存在误差,所以,结构监测总是存在误差的。该误差一方面可能造成结构实际参数、状态与设计或控制值吻合较好的假象,也可能造成将本来可能较好的状态调整得更差的情况。所以,保证测量的可靠性对控制极为重要。在控制过程中,除要从测量设备、方法上尽量设法减小测量误差外,在进行控制分析时必须将其计入。

  3.4结构计算分析模型

  无论采用什么分析方法和手段,总是要对实际桥梁结构进行简化和建立计算模型,这种简化使计算模型与实际情况存在误差,包括各种假设、边界条件处理、模型的本身精度等,控制中需要在这方面做大量工作,必要时还要进行专门的试验研究,以使计算模型误差所产生的影响减到最低限度。

  3.5温度变化

  温度变化对桥梁结构的受力与变形影响很大,这种影响随温度的改变而改变,在不同时刻对结构状态(应力、变形)进行量测,其结果是不一样的,如果施工控制中忽略了该项因素,就必然难以得到结构的真实状态数据,从而也难以保证控制的有效性,所以,必须考虑温度变化的影响。温度变化相当复杂,包括季节温差、日照温差、骤变温差、残余温度、不同温度场等,而在原定控制状态中又无法预先知道温度的实际变化情况,所以在控制中是难以考虑的(要考虑也将是很复杂的)。通常都是将控制理想状态定位在某一特定温度下,从而将温度变化对结构的影响相对排除(过滤)。_二般是将一天中的温度变化较小的早晨作为控制所需实测数据的采集时间。但对季节温差和桥梁体内的温度残余影响要予以重视。

  4施工控制的结构计算方法

  桥梁施工监控中的结构分析方法包括前进分析法、倒退分析法以及无应力状态法。对于分节段悬臂浇筑施工的预应力混凝土连续梁桥,施工控制结构计算的方法采用前进分析法和倒退分析法。

  4.1前进分析法

  为了计算出桥梁结构在成桥后的受力状态,只有根据实际结构的配筋情况和既定施工方案逐个阶段地进行计算,最终才能得到成桥结构的受力状态和变形情况。这种计算方法的特点是:随着施工阶段的推进,结构形式、边界约束、荷载形式在不断地改变,前期结构将发生徐变,其几何位置也在改变,因此,前一阶段的结构状态将是本次施工阶段结构分析的基础。这种按施工阶段前后次序进行的结构分析方法称为前进分析法。前进分析法能够较好地模拟桥梁结构的实际施工历程。

  4.2倒退分析法

  前进分析可以严格按照设计好的施工步骤进行各阶段内力分析,但由于分析中结构节点坐标的改变,最终结构线形不可能完全满足设计线形要求。实际施工中桥梁结构线形的控制与强度控制同样重要,线形误差将造成桥梁结构的合拢困难,影响桥梁建成后的受力状态、视觉效果和营运质量,甚至管理。为了使竣工后的结构达到设计线形,在施工过程中用设置预拱度的方法来实现。而对于分阶段施工的连续梁桥,一般要求给出各个施工阶段结构物控制点的标高(预抛高),以便最终使结构物满足设计要求。这个问题用前进分析法是难以解决的。

  倒退分析法可解决这一问题,它的基本思想是,假定t-t。时刻结构内力分布满足前进分析t。时刻的结果,轴线满足设计线形要求。在此初始状态下,按照前进分析的逆过程,对结构进行倒拆,分析每次拆除一个施工节段对剩余结构的影响,在一个阶段内分析得到的结构位移、内力状态便是该阶段结构理想的施工状态。所谓结构施工理想状态就是在施工各阶段结构应有的位置和受力状态,每个阶段的施工理想状态都将控制着全桥最终形态的受力特性。

  参考文献

  [1]余汉国.顺德甘竹滩大桥挂篮悬浇施工技术【J】.科技资讯,2007,5.

  【2】张红华7.大坪湾大桥主桥连续箱梁悬臂灌注施工技术[J].科技创新导报,2003,10.

在线投稿